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The Final Three Meters in the ILC – Can the Beam Approach 5 nm?  
 

W. Chou 
Fermilab, August 2006 

 
It is known that while the cost of the ILC is determined by the beam energy, its technical 
challenge comes from the luminosity. Compared with the SLC, the increase in beam 
energy is a factor of 5 (from 50 to 250 GeV), but in luminosity, a factor of 10,000 (from 
1030 to 1034 cm−2s−1). To reach such a high luminosity, one must make the beam size very 
small at the IP (σy = 5 nm). The question is: Can a dense charged particle beam be made 
so tiny? This memo gives a quantitative analysis of the space charge force, which would 
ultimately determine the smallest beam size that could be obtained. 
 
The ILC final focusing and beam envelope are shown in Figure 1. The vertical beam size 
σy would be reduced by a factor of 20,000 (from 100 μm to 5 nm) in the final three 
meters before the beam reaches the IP. 
        ~ 3 m           IP 

 
Figure 1: ILC final focusing doublet. (Courtesy A. Seryi) 

 
The electric and magnetic space charge forces of the electron (or positron) beam are 
strong. Due to opposite direction of the two forces, the total space charge force e × [E + 
(v × B)] would have nearly perfect cancellation (1 – β2 = 1/γ2) at high energy. However, 
this is only possible if the beam has zero emittance (i.e., no divergence). The ILC beam 
divergences are respectively, σx’ = 31.2 μrad, σy’ = 14.3 μrad. Thus, for example, in the 
Y direction there would be 1.43 × 10−5 part of the Coulomb force (e × E) that would not 
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be compensated. This residual force could still be large compared to the external 
magnetic focusing force. The following is a quantitative comparison. 
 
We will use two known results: 

1) The space charge electric field of a 2-D ellipse and a 3-D ellipsoid with uniform 
charge distribution can be found in Refs. [1-6]. 

2) We are interested in beam envelope, which is determined by the second moment 
and not by the charge distribution [7]. Therefore, a 3-D ellipsoid beam with 
Gaussian distribution of rms size (σx, σy, σz) can be replaced by an ellipsoid with 
uniform distribution of size (5σx, 5σy, 5σz) since both have the same second 
moment. 

 
Because the longitudinal size of the ILC beam is much larger than the transverse one, we 
may simplify our calculation to a 2-D ellipse, which has uniform charge distribution and 
the size of (4σx, 4σy). (Note: This gives the same second moment as an elliptical 
Gaussian beam in 2-D.) Let a and b be the semi-axis of the ellipse. The electric field 
inside and outside is shown in Figure 2 and can be expressed as: 
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in which λ is the line density and ε0 is the vacuum permittivity. Similar expressions are 
for Ey with a and b interchanged and x replaced by y. (When x ≥ a and y ≠ 0, the 
expression is more complicated but of no interest to this memo.)  
 

E-field of a Uniform Ellipse
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Figure 2: Electric field of an ellipse with uniform charge distribution (a = 2b) 

 
The field is linear inside the ellipse and reaches maximum on the boundary: 
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By employing the following ILC parameters: 
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 N = 2 × 1010  per bunch 
 σx = 0.655  μm 

σy = 5.72  nm 
σz = 3 × 10−4 m 

we get: 
λ = N / [(2π)1/2σz] = 2.7 × 1013 particles/m 

 a = 4σx = 2.6 × 10−6 m 
b = 4σy = 2.3 × 10−8 m 

 
The maximum space charge electric force on the boundary is: 

N105.9max)(max)( 9−×== yx FF  
 
(It is interesting to note that this force is about 1/10 in magnitude of the bonding force 
between the electron and proton in a hydrogen atom.) As noted above, most of this force 
will be cancelled by the space charge magnetic force. The cancellation, however, won’t 
be perfect due to finite beam emittance. The residual force can be estimated as: 
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This defocusing force should be compared to the external focusing force from the final 
doublet, of which the parameters are listed in Table 1. 
 

Table 1: ILC Final Doublet Parameters (2 mrad IR design) 
Magnet Bore radius R (mm) Gradient G  (T/m) Length L (m) 

QD 35 160 2.5 
QF 10 68 2.0 

 
The final vertical focusing mainly comes from QD. The beam envelope shown in Figure 
1 assumes the final three meters are a free space (i.e., no focusing or defocusing force). 
However, this is not true and we already know the magnitude of the defocusing force. For 
the sake of comparison, we assume the external magnetic field was still there and can 
calculate the corresponding focusing force as follows:  
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It is seen that the defocusing force is three orders of magnitude larger than the focusing 
force. This brings up a problem – Even if the design emittance could be achieved (which 
is hard), we may still be unable to squeeze the beam to the design size at the IP because 
of the presence of a strong defocusing force in the final three meters.  
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Appendix 1 – ILC Beam Volume Density: 
 
Another way to look at the difficulty for the ILC beam to reach the design size is to 
calculate the particle volume density. Table 2 lists the beam size and density for the ILC, 
SLC, FFTB and ATF, respectively.  
 

Table 2: Beam Size and Density 
 ILC 

(design) 
SLC 

(achieved) 
FFTB 

(achieved) 
ATF 

(achieved) 
Particles per bunch, N 2 × 1010 3.5 × 1010 0.65 × 1010 3 × 1010 
σx (mm) 0.655 × 10−3 1.6 × 10−3 1 × 10−3 40 × 10−3 
σy (mm) 5.72 × 10−6 0.7 × 10−3 70 × 10−6 5 × 10−3 
σz (mm) 0.3 1.2 1.2 9 
Density, N / σxσyσz   (mm−3) 1.8 × 1019 2.6 × 1016 7.7 × 1016 1.7 × 1013 

 
The particle volume density in the ILC is so high that if we compare it with ordinary 
materials in the rest frame, it is three orders of magnitude higher than the ideal gas and 
even higher than some solid, e.g., potassium, as shown in Table 3. 
 

Table 3: Comparison of Particle Density 
 ILC 

(lab frame) 
Ideal Gas 

(rest frame) 
Potassium 

(rest frame) 
Particle density  (mm−3) 1.8 × 1019 2.7 × 1016 1.3 × 1019 

 
In reality, the situation is even more severe. While the particle distribution in gases and 
solids in the three dimensions is uniform, it is highly uneven in the ILC beam. The aspect 
ratio is Y: X: Z = 1: 115: 52450. The particles are much denser in the Y direction than in 
the other two directions. To estimate how dense it is, let us draw a box near the peak 
density point with the size Y × X × Z = 1 Å × 115 Å × 52450 Å. The number of particles 
in this box would be approximately 1.1 × 105, or 48 particles in each direction. In other 
words, there would be 48 electrons (or positrons) within 1 Å (the size of an atom) in the 
Y direction. (In the SLC case, the same procedure leads to 0.47 electrons or positrons 
within 1 Å in the Y direction, which is 100 times less than in the ILC.) 
 
These densely populated particles result in an enormous space charge force, which, even 
after the relativistic cancellation, remains much larger than the external focusing force as 
demonstrated in the text. 
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Appendix 2 – Modification of the Beam Envelope Equation: 
 
The beam envelope, when the space charge is included, can be obtained by solving the 
following envelope equation [1,7]:  
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where ax/ay is the horizontal/vertical (h/v) beam envelope, kx(s)/ky(s) is the h/v focusing 
quadrupole strength, εx/εy is the h/v unnormalized emittance, and K is the dimensionless 
parameter (called the generalized perveance) describing the strength of the space charge: 
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in which I is the beam current and I0 is the Alfvén current: 
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A modification for the ILC beam in the final three meters is to replace 1/γ2 in the 
expression of K by ax’ and ay’, respectively: 
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In most cases when the space charge is of interest, γ is low and the beam divergence is 
much smaller than 1/γ2. As a result, the residual space charge force from the beam 
divergence can be ignored.  However, the ILC is a special case. The beam divergence is 
much larger than 1/γ2 and the modification is necessary.  
 
For the ILC final focusing, we have: 
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The parameters Kx and Ky increase rapidly in the final three meters (∝ βy
−1/2 and βx

−1/2, 
respectively) and approach the following values at the IP: 
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The modified envelope equation can be solved numerically. It is, however, beyond the 
scope of this memo. 


